The Development and Demonstration of the Portable Acousto-Optic Spectrometer for Astrobiology in Cave Environments

Earth Space Sci. 2023 Feb;10(2):e2022EA002370. doi: 10.1029/2022EA002370. Epub 2023 Feb 10.

Abstract

Planetary caves are desirable environments for the search for biosignatures corresponding to extant or extinct extraterrestrial life due to the protection they offer from surface-level solar radiation and ionizing particles. Near-infrared (NIR) reflectance spectroscopy is one of a multitude of techniques that, when taken together, can provide a comprehensive understanding of the geomicrobiology in planetary subsurface regions. To that end, we developed two portable NIR spectrometers that employ acousto-optic tunable filters and demonstrated them in three geochemically distinct cave environments. The instruments were deployed both as stand-alone spectrometers positioned against the targets manually and as a component of an instrument payload mounted on a quadruped robot capable of vertical excursions of several meters. In situ measurements of calcium carbonates, sulfates, metal oxides, and microbial colonies and mats revealed spectral signatures that enable a distinction between the targets of interest and the underlying substrates. The ruggedness and portability of the instruments, and their low size, weight, and power, spectral agility, and active illumination make AOTF-based spectrometers ideally suited for studies of planetary caves.