A tailored tetravalent peptide displays dual functions to inhibit amyloid β production and aggregation

Commun Biol. 2023 Apr 8;6(1):383. doi: 10.1038/s42003-023-04771-9.

Abstract

Inhibition of amyloid-β peptide (Aβ) accumulation in the brain is a promising approach for treatment of Alzheimer's disease (AD). Aβ is produced by β-secretase and γ-secretase in endosomes via sequential proteolysis of amyloid precursor protein (APP). Aβ and APP have a common feature to readily cluster to form multimers. Here, using multivalent peptide library screens, we identified a tetravalent peptide, LME-tet, which binds APP and Aβ via multivalent interactions. In cells, LME-tet-bound APP in the plasma membrane is transported to endosomes, blocking Aβ production through specific inhibition of β-cleavage, but not γ-cleavage. LME-tet further suppresses Aβ aggregation by blocking formation of the β-sheet conformation. Inhibitory effects are not observed with a monomeric peptide, emphasizing the significance of multivalent interactions for mediating these activities. Critically, LME-tet efficiently reduces Aβ levels in the brain of AD model mice, suggesting it may hold promise for treatment of AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / drug therapy
  • Alzheimer Disease* / metabolism
  • Amyloid Precursor Protein Secretases / metabolism
  • Amyloid beta-Peptides* / metabolism
  • Animals
  • Brain / metabolism
  • Cell Membrane / metabolism
  • Mice

Substances

  • Amyloid beta-Peptides
  • Amyloid Precursor Protein Secretases