Motion analysis of dyadic talk during joint search and decision-making - A replication study

Hum Mov Sci. 2023 Jun:89:103074. doi: 10.1016/j.humov.2023.103074. Epub 2023 Apr 5.

Abstract

Human interaction frequently includes decision-making processes during which interactants call on verbal and non-verbal resources to manage the flow of interaction. In 2017, Stevanovic et al. carried out pioneering work, analyzing the unfolding of moment-by-moment dynamics by investigating the behavioral matching during search and decision-making phases. By studying the similarities in the participant's body sway during a conversation task in Finnish, the authors showed higher behavioral matching during decision phases than during search phases. The purpose of this research was to investigate the whole-body sway and its coordination during joint search and decision-making phases as a replication of the study by Stevanovic et al. (2017) but based on a German population. Overall, 12 dyads participated in this study and were asked to decide on 8 adjectives, starting with a pre-defined letter, to describe a fictional character. During this joint-decision task (duration: 206.46 ± 116.08 s), body sway of both interactants was measured using a 3D motion capture system and center of mass (COM) accelerations were computed. Matching of body sway was calculated using a windowed cross correlation (WCC) of the COM accelerations. A total of 101 search and 101 decision phases were identified for the 12 dyads. Significant higher COM accelerations (5.4*10-3 vs. 3.7*10-3 mm/s2, p < 0.001) and WCC coefficients (0.47 vs. 0.45, p = 0.043) were found during decision-making phases than during search phases. The results suggest that body sway is one of the resources humans use to communicate the arrival at a joint decision. These findings contribute to a better understanding of interpersonal coordination from a human movement science perspective.

Keywords: Behavioral matching; Body sway; Conversation analysis; Interpersonal coordination; Motion analysis; Synchronization.

MeSH terms

  • Acceleration*
  • Humans
  • Motion
  • Movement*
  • Postural Balance