Discrete Time Crystal Enabled by Stark Many-Body Localization

Phys Rev Lett. 2023 Mar 24;130(12):120403. doi: 10.1103/PhysRevLett.130.120403.

Abstract

Discrete time crystals (DTCs) have recently attracted increasing attention, but most DTC models and their properties are only revealed after disorder average. In this Letter, we propose a simple disorder-free periodically driven model that exhibits nontrivial DTC order stabilized by Stark many-body localization (MBL). We demonstrate the existence of the DTC phase by analytical analysis from perturbation theory and convincing numerical evidence from observable dynamics. The new DTC model paves a new promising way for further experiments and deepens our understanding of DTCs. Since the DTC order does not require special quantum state preparation and the strong disorder average, it can be naturally realized on the noisy intermediate-scale quantum hardware with much fewer resources and repetitions. Moreover, in addition to the robust subharmonic response, there are other novel robust beating oscillations in the Stark-MBL DTC phase that are absent in random or quasiperiodic MBL DTCs.