Phase Retrieval-Based Phase-Contrast Imaging and CT of Living Zebrafish

Zebrafish. 2023 Jun;20(3):103-112. doi: 10.1089/zeb.2022.0067. Epub 2023 Apr 6.

Abstract

Zebrafish are widely used as experimental animal models. They are small and move fast in the water. Real-time imaging of fast-moving zebrafish is a challenge, and it requires that the imaging technique has higher spatiotemporal resolution and penetration ability. The purpose of this study was to evaluate the feasibility of dynamic phase retrieval (PR)-based phase-contrast imaging (PCI) for real-time displaying of the breathing and swimming process in unanesthetized free-moving zebrafish, and to evaluate the feasibility of PR-based phase-contrast CT (PCCT) for visualizing the soft tissues in anesthetized living zebrafish. PR was performed using the phase-attenuation duality (PAD) method with the δ/β values (PAD property) of 100 and 1000 for dynamic PR-based PCI and PR-based PCCT, respectively. The contrast-to-noise ratio (CNR) was used for quantitatively assessing the visibility of the adipose tissue and muscle tissue. The skeleton and swim bladder chambers in fast-moving zebrafish were clearly shown. The dynamic processes of breathing and swimming were visibly recorded. The respiratory intensity and frequency and the movement flexibility of the zebrafish could be dynamically evaluated. By producing more obvious image contrast, PR-based PCCT clearly showed the adipose tissue and muscle tissue. The CNRs from PR-based PCCT were significantly higher than those from PR-free PCCT for both adipose tissue (9.256 ± 2.037 vs. 0.429 ± 0.426, p < 0.0001) and muscle tissue (7.095 ± 1.443 vs. 0.324 ± 0.267, p < 0.0001). Dynamic PR-based PCI holds the potential for investigating both morphological abnormalities and motor disorders. PR-based PCCT offers clear visualization and the potential for quantification of soft tissues in living zebrafish.

Keywords: CT; dynamic visualization; phase retrieval; phase-contrast imaging; zebrafish.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Tomography, X-Ray Computed* / methods
  • Zebrafish*