Oxidative Polymerization of 3,4-Dihydroxybenzylamine─The Lower Homolog of Dopamine

Langmuir. 2023 Apr 18;39(15):5610-5620. doi: 10.1021/acs.langmuir.3c00604. Epub 2023 Apr 6.

Abstract

Polydopamine (PDA) formed by oxidative polymerization of dopamine has attracted wide interest because of its unique properties, in particular its strong adhesion to almost all types of surfaces. 3,4-Dihydroxybenzylamine (DHBA) as the lower homolog of PDA also contains a catechol unit and an amino group and thus can be expected to exhibit a similar adhesion and reaction behavior. In fact, autoxidation of DHBA with air in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer gives rise to deeply colored oligomer/polymer products (poly(3,4-dihydroxybenzylamine) (PDHBA)) that strongly adhere to several surfaces. Here, the material is characterized by solid-state NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy, mass spectrometry, and atomic force microscopy (AFM). Reaction pathways were rationalized taking into consideration the analytical results that show similarity to PDA chemistry, but also considering differences, leading to a more complex reaction behavior and thus to new structures not found in PDA.