Learning Oriented Object Detection via Naive Geometric Computing

IEEE Trans Neural Netw Learn Syst. 2023 Feb 10:PP. doi: 10.1109/TNNLS.2023.3242323. Online ahead of print.

Abstract

Detecting oriented objects along with estimating their rotation information is one crucial step for image analysis, especially for remote sensing images. Despite that many methods proposed recently have achieved remarkable performance, most of them directly learn to predict object directions under the supervision of only one (e.g., the rotation angle) or a few (e.g., several coordinates) groundtruth (GT) values individually. Oriented object detection would be more accurate and robust if extra constraints, with respect to proposal and rotation information regression, are adopted for joint supervision during training. To this end, we propose a mechanism that simultaneously learns the regression of horizontal proposals, oriented proposals, and rotation angles of objects in a consistent manner, via naive geometric computing, as one additional steady constraint. An oriented center prior guided label assignment strategy is proposed for further enhancing the quality of proposals, yielding better performance. Extensive experiments on six datasets demonstrate the model equipped with our idea significantly outperforms the baseline by a large margin and several new state-of-the-art results are achieved without any extra computational burden during inference. Our proposed idea is simple and intuitive that can be readily implemented. Source codes are publicly available at: https://github.com/wangWilson/CGCDet.git.