Amino Acid Starvation-Induced Glutamine Accumulation Enhances Pneumococcal Survival

mSphere. 2023 Jun 22;8(3):e0062522. doi: 10.1128/msphere.00625-22. Epub 2023 Apr 5.

Abstract

Bacteria are known to cope with amino acid starvation by the stringent response signaling system, which is mediated by the accumulation of the (p)ppGpp alarmones when uncharged tRNAs stall at the ribosomal A site. While a number of metabolic processes have been shown to be regulatory targets of the stringent response in many bacteria, the global impact of amino acid starvation on bacterial metabolism remains obscure. This work reports the metabolomic profiling of the human pathogen Streptococcus pneumoniae under methionine starvation. Methionine limitation led to the massive overhaul of the pneumococcal metabolome. In particular, methionine-starved pneumococci showed a massive accumulation of many metabolites such as glutamine, glutamic acid, lactate, and cyclic AMP (cAMP). In the meantime, methionine-starved pneumococci showed a lower intracellular pH and prolonged survival. Isotope tracing revealed that pneumococci depend predominantly on amino acid uptake to replenish intracellular glutamine but cannot convert glutamine to methionine. Further genetic and biochemical analyses strongly suggested that glutamine is involved in the formation of a "prosurvival" metabolic state by maintaining an appropriate intracellular pH, which is accomplished by the enzymatic release of ammonia from glutamine. Methionine starvation-induced intracellular pH reduction and glutamine accumulation also occurred to various extents under the limitation of other amino acids. These findings have uncovered a new metabolic mechanism of bacterial adaptation to amino acid limitation and perhaps other stresses, which may be used as a potential therapeutic target for infection control. IMPORTANCE Bacteria are known to cope with amino acid starvation by halting growth and prolonging survival via the stringent response signaling system. Previous investigations have allowed us to understand how the stringent response regulates many aspects of macromolecule synthesis and catabolism, but how amino acid starvation promotes bacterial survival at the metabolic level remains largely unclear. This paper reports our systematic profiling of the methionine starvation-induced metabolome in S. pneumoniae. To the best of our knowledge, this represents the first reported bacterial metabolome under amino acid starvation. These data have revealed that the significant accumulation of glutamine and lactate enables S. pneumoniae to form a "prosurvival" metabolic state with a lower intracellular pH, which inhibits bacterial growth for prolonged survival. Our findings have provided insightful information on the metabolic mechanisms of pneumococcal adaptation to nutrient limitation during the colonization of the human upper airway.

Keywords: Streptococcus pneumoniae; cellular pH; glutamine accumulation; intracellular pH; metabolome; methionine; methionine starvation; survival.

MeSH terms

  • Amino Acid Transport Systems / metabolism
  • Bacterial Proteins / metabolism
  • Glutamine* / metabolism
  • Metabolome
  • Methionine / metabolism
  • Streptococcus pneumoniae* / growth & development
  • Streptococcus pneumoniae* / metabolism

Substances

  • Methionine
  • Glutamine
  • Amino Acid Transport Systems
  • Bacterial Proteins