Design, Synthesis, and Bioactivity of Novel Ester-Substituted Cyclohexenone Derivatives as Safeners

J Agric Food Chem. 2023 Apr 5. doi: 10.1021/acs.jafc.2c07979. Online ahead of print.

Abstract

Tembotrione, a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, has been widely used in many types of plants. Tembotrione has been reported for its likelihood of causing injury and plant death to certain corn hybrids. Safeners are co-applied with herbicides to protect certain crops without compromising weed control efficacy. Alternatively, herbicide safeners may effectively improve herbicide selectivity. To address tembotrione-induced Zea mays injury, a series of novel ester-substituted cyclohexenone derivatives were designed using the fragment splicing method. In total, 35 title compounds were synthesized via acylation reactions. All the compounds were characterized using infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. The configuration of compound II-15 was confirmed using single-crystal X-ray diffraction. The bioactivity assay proved that tembotrione phytotoxicity to maize could be reduced by most title compounds. In particular, compound II-14 exhibited the highest activity against tembotrione. The molecular structure comparisons as well as absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound II-14 exhibited pharmacokinetic properties similar to those of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound II-14 could prevent tembotrione from reaching or acting with Z. mays HPPD (PDB: 1SP8). Molecular dynamics simulations showed that compound II-14 maintained satisfactory stability with Z. mays HPPD. This research revealed that ester-substituted cyclohexenone derivatives can be developed as potential candidates for discovering novel herbicide safeners in the future.

Keywords: ester-substituted cyclohexenone; fragment splicing; molecular simulation; safener activity; synthesis.