The technical development of photon-counting detector CT

Eur Radiol. 2023 Aug;33(8):5321-5330. doi: 10.1007/s00330-023-09545-9. Epub 2023 Apr 4.

Abstract

Since 1971 and Hounsfield's first CT system, clinical CT systems have used scintillating energy-integrating detectors (EIDs) that use a two-step detection process. First, the X-ray energy is converted into visible light, and second, the visible light is converted to electronic signals. An alternative, one-step, direct X-ray conversion process using energy-resolving, photon-counting detectors (PCDs) has been studied in detail and early clinical benefits reported using investigational PCD-CT systems. Subsequently, the first clinical PCD-CT system was commercially introduced in 2021. Relative to EIDs, PCDs offer better spatial resolution, higher contrast-to-noise ratio, elimination of electronic noise, improved dose efficiency, and routine multi-energy imaging. In this review article, we provide a technical introduction to the use of PCDs for CT imaging and describe their benefits, limitations, and potential technical improvements. We discuss different implementations of PCD-CT ranging from small-animal systems to whole-body clinical scanners and summarize the imaging benefits of PCDs reported using preclinical and clinical systems. KEY POINTS: • Energy-resolving, photon-counting-detector CT is an important advance in CT technology. • Relative to current energy-integrating scintillating detectors, energy-resolving, photon-counting-detector CT offers improved spatial resolution, improved contrast-to-noise ratio, elimination of electronic noise, increased radiation and iodine dose efficiency, and simultaneous multi-energy imaging. • High-spatial-resolution, multi-energy imaging using energy-resolving, photon-counting-detector CT has been used in investigations into new imaging approaches, including multi-contrast imaging.

Keywords: Humans; Iodine; Photons; Radiation dosage; Tomography, X-ray computed.

Publication types

  • Review

MeSH terms

  • Animals
  • Iodine*
  • Phantoms, Imaging
  • Photons
  • Tomography, X-Ray Computed* / methods
  • X-Rays

Substances

  • Iodine