Micro-nano porous structured tantalum-coated dental implants promote osteogenic activity in vitro and enhance osseointegration in vivo

J Biomed Mater Res A. 2023 Sep;111(9):1358-1371. doi: 10.1002/jbm.a.37538. Epub 2023 Apr 3.

Abstract

Due to its excellent biocompatibility and corrosion resistance, tantalum demonstrates versatility as an implant material. However, limited studies investigated the role of tantalum coated titanium-based dental implants. This study aimed to investigate the potential application of micro-nano porous structured tantalum coating on the surface of titanium dental implant. In the present study, micro-nano porous structured tantalum coating was prepared by vacuum plasma spraying (VPS) under selected optimum parameters, various characteristics of tantalum coating (Ta/Ti), including the morphology, potential, constituent, and hydrophilia, were investigated in comparison with its respective control groups, sandblasted titanium (Ti) and titanium coating (Ti/Ti). The adhesion, proliferation, and osteogenic differentiation ability of rat bone marrow mesenchymal cells (BMSCs) on different materials were assessed in vitro. Then the osseointegration capacity of Ti, Ti/Ti, Ta/Ti, and Straumann implants in canine mandible was evaluated with micro-CT, histological sections, and energy dispersive X-ray spectroscopy. These results demonstrated that micro-nanostructured, uneven, and granular tantalum coating was successfully prepared on titanium substrate by VPS with pore size ranging from 50 nm to 5 μm and thickness ranging from 80 to 100 μm. Tantalum coating revealed the highest surface potential, best hydrophilia, and most protein adsorption among Ta/Ti, Ti/Ti, and Ti. Furthermore, Ta/Ti surfaces significantly promoted the adhesion, proliferation, and osteogenic differentiation of BMSCs. In vivo, Ta/Ti implants displayed positive osseointegration capability associated with increased bone mineral density and formation of new bone around implants without tantalum particles released. Together, these findings indicate that tantalum-coated titanium dental implants may serve as a new type of dental implant.

Keywords: osteogenic differentiation; osteointegration; tantalum; vacuum plasma spraying.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dental Implants*
  • Osseointegration*
  • Osteogenesis
  • Rats
  • Surface Properties
  • Tantalum / chemistry
  • Tantalum / pharmacology
  • Titanium / chemistry
  • Titanium / pharmacology

Substances

  • Dental Implants
  • Titanium
  • Tantalum