An optimized workflow for MS-based quantitative proteomics of challenging clinical bronchoalveolar lavage fluid (BALF) samples

Clin Proteomics. 2023 Apr 2;20(1):14. doi: 10.1186/s12014-023-09404-1.

Abstract

Background: Clinical bronchoalveolar lavage fluid (BALF) samples are rich in biomolecules, including proteins, and useful for molecular studies of lung health and disease. However, mass spectrometry (MS)-based proteomic analysis of BALF is challenged by the dynamic range of protein abundance, and potential for interfering contaminants. A robust, MS-based proteomics compatible sample preparation workflow for BALF samples, including those of small and large volume, would be useful for many researchers.

Results: We have developed a workflow that combines high abundance protein depletion, protein trapping, clean-up, and in-situ tryptic digestion, that is compatible with either qualitative or quantitative MS-based proteomic analysis. The workflow includes a value-added collection of endogenous peptides for peptidomic analysis of BALF samples, if desired, as well as amenability to offline semi-preparative or microscale fractionation of complex peptide mixtures prior to LC-MS/MS analysis, for increased depth of analysis. We demonstrate the effectiveness of this workflow on BALF samples collected from COPD patients, including for smaller sample volumes of 1-5 mL that are commonly available from the clinic. We also demonstrate the repeatability of the workflow as an indicator of its utility for quantitative proteomic studies.

Conclusions: Overall, our described workflow consistently provided high quality proteins and tryptic peptides for MS analysis. It should enable researchers to apply MS-based proteomics to a wide-variety of studies focused on BALF clinical specimens.

Keywords: BALF; Bronchoalveolar lavage fluid; Lung disease; Mass spectrometry; Quantitative proteomics; Sample preparation.