Characterization of leaf trichomes and their influence on surface wettability of Salsola ferganica, an annual halophyte in the desert

Physiol Plant. 2023 May-Jun;175(3):e13905. doi: 10.1111/ppl.13905.

Abstract

Many organisms use functional surfaces to collect water from the atmosphere. Salsola ferganica Drob. is one of the most abundant plants in desert regions and thrives in extreme environments with multiple but limited water resources, including dew and fog; however, its mechanisms of water harvesting remain unclear. We investigated trichome structural characteristics and their influence on the surface wettability of S. ferganica leaves using a variety of approaches (scanning electron microscopy, optical microscopy, immunolabelling staining, x-ray diffractometry, and infrared spectroscopy). Microstructural observations revealed that the trichomes of S. ferganica presented a curved upper part, the 'spindle node'-like structure in the middle, and the micro-grooves structure in between; such unique structures may aid in capturing moisture from the air. The physicochemical characteristics of the trichome surface, including hydrophobic functional groups, hydrophilic pectins, and low crystallinity, may enhance the adhesion of water drops to trichomes. Furthermore, we discovered that the piliferous S. ferganica leaves were more effective in retaining water than the glabrous S. aralocaspica leaves, and the dense trichome layer exhibited a significantly unwettable surface (high contact angle with droplets), whereas the individual trichomes retained water effectively (more so under drought conditions). The combination of these two properties is consistent with the 'rose petal effect', which describes rough surfaces that are hydrophobic but exhibit high adhesion with water. These factors suggest that the evolutionary optimisation of water acquisition by coupling relevant microstructures with the physicochemical properties of trichomes enables S. ferganica to survive harsh conditions in the seedling stage.

MeSH terms

  • Plant Leaves / chemistry
  • Salsola*
  • Salt-Tolerant Plants
  • Trichomes*
  • Water / chemistry
  • Wettability

Substances

  • Water