Development of neutrosophic cubic hesitant fuzzy exponential aggregation operators with application in environmental protection problems

Sci Rep. 2023 Mar 31;13(1):5262. doi: 10.1038/s41598-022-22399-3.

Abstract

The population growth and urbanization has caused an exponential increase in waste material. The proper disposal of waste is a challenging problem nowadays. The proper disposal site selection with typical sets and operators may not yield fruitful results. To handle such problems, the exponential aggregation operators based on neutrosophic cubic hesitant fuzzy sets are proposed. For appropriate decisions in a decision-making problem, it is important to have a handy environment and aggregation operators. Many multi attribute decision making methods often ignore the uncertainty and hence yields the results which are not reliable. The neutrosophic cubic hesitant fuzzy set can efficiently handle the complex information in a decision-making problem, as it combines the advantages of neutrosophic cubic set and hesitant fuzzy set. In this paper first we establish exponential operational laws in neutrosophic cubic hesitant fuzzy sets, in which the exponents are neutrosophic cubic hesitant fuzzy numbers and bases are positive real numbers. In order to use neutrosophic cubic hesitant fuzzy sets in decision making, we are developing exponential aggregation operators and investigate their properties in the current study. In many multi expert decision-making methods there are different decision matrices but same weighting vector for attributes. The results of a multi expert decision-making problem becomes more reliable if every decision expert has its own decision matrix along with his own weighting vector for attributes. In this study, we are developing multi expert decision-making method that uses different weights for an attribute corresponding to different experts. At the end we present two applications of exponential aggregation operators in environmental protection multi attribute decision making problems.