Multiphoton Ionization Reduction of Atoms in Two-Color Femtosecond Laser Fields

Phys Rev Lett. 2023 Mar 17;130(11):113201. doi: 10.1103/PhysRevLett.130.113201.

Abstract

We report the ionization reduction of atoms in two-color femtosecond laser fields in this joint theoretical-experimental study. For the multiphoton ionization of atoms using a 400 nm laser pulse, the ionization probability is reduced if another relatively weak 800 nm laser pulse is overlapped. Such ionization reduction consistently occurs regardless of the relative phase between the two pulses. The time-dependent Schrödinger equation simulation results indicate that with the assisted 800 nm photons the electron can be launched to Rydberg states with large angular quantum numbers, which stand off the nuclei and thus are hard to be freed in the multiphoton regime. This mechanism works for hydrogen, helium, and probably some other atoms if two-color laser fields are properly tuned.