Topological Langmuir-cyclotron wave

Sci Adv. 2023 Mar 31;9(13):eadd8041. doi: 10.1126/sciadv.add8041. Epub 2023 Mar 31.

Abstract

A theory is developed to describe the topological Langmuir-cyclotron wave (TLCW), a topological excitation in magnetized plasmas recently identified by numerical simulations. As a topological wave in a continuous medium, the TLCW propagates unidirectionally without scattering in complex boundaries and can be explored as an effective mechanism to energize particles. We show that, because momentum space in continuous media is contractible in general, the topology of the wave bundles is trivial over momentum space that contains no degeneracy points. This is in stark contrast to condensed matters with periodic lattice structures that impose nontrivial topology on momentum space. In continuous media without lattice structures, nontrivial topology of the eigenmode bundles manifests over phase space, and it is the nontrivial topology over phase space that underpins the topological excitations, such as the TLCW. It is shown that the TLCW can be faithfully modeled by a generic tilted Dirac cone in phase space, whose entire spectrum, including the spectral flow, is given.