Identification of key modules and candidate genes associated with endometriosis based on transcriptome data via bioinformatics analysis

Pathol Res Pract. 2023 Apr:244:154404. doi: 10.1016/j.prp.2023.154404. Epub 2023 Mar 23.

Abstract

Backgrounds: Endometriosis is a common disease in women, but the signaling pathways and genes involved remain unclear. This study screened genes that were differentially expressed in ectopic endometrium (EC) and eutopic endometrium (EU) in endometriosis and provided clues for subsequent experimental verification.

Methods: Endometriosis samples were harvested from inpatients that underwent surgery from 2017 to 2019 with pathological evidence of endometriosis. We assessed the mRNA expression profiles in endometriosis and further conducted gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA) and weighted gene co-expression network analysis (WGCNA) to identify potential biomarkers in endometriosis. Finally, we further validated hub genes using public databases and immunohistochemistry assays.

Results: The upregulated DEGs of ectopic endometrium from endometriosis patients were mainly involved in cell adhesion, MAPK signaling, PI3K-Akt signaling pathways, cytokine receptor interactions, and epithelial-mesenchymal transformation (EMT)-associated signaling pathways. The downregulated DEGs between ectopic endometrium and eutopic endometrium were related to decidualization-associated genes in endometriosis. The correlated gene modules in eutopic endometrial cells were mainly enriched in cell adhesion, embryo implantation and inflammation. The eutopic and ectopic endometrial lesions in endometriosis were involved in the EMT process. Furthermore, we identified 18 co-expression modules during WGCNA analysis. Hub genes in the pale turquoise module were FOSB, JUNB, ATF3, CXCL2, FOS, etc. Significantly enriched KEGG pathways included the TNF, MAPK, foxO, oxytocin, and p53 signaling pathways. Enrichment pathways were directly related to immune surveillance, stem cell self-renewal, and epithelial-mesenchymal transformation. Several pathways and modules of endometriosis are related to cancer-associated pathways, which substantiates the correlation between endometriosis and various gynecological tumors.

Conclusions: Endometriosis was tightly correlated with EMT and fibrosis mediated by inflammatory immunity, cytokines, estrogen, kinases and protooncogene through transcriptomics. Overall, our findings lay the groundwork for understanding the pathogenesis of endometriosis and its relationship with malignant transformation.

Keywords: Bioinformatics analysis; Endometriosis; WGCNA analysis; mRNA-sequence.

MeSH terms

  • Computational Biology
  • Endometriosis* / pathology
  • Female
  • Humans
  • Phosphatidylinositol 3-Kinases / metabolism
  • Signal Transduction / genetics
  • Transcriptome

Substances

  • Phosphatidylinositol 3-Kinases