Electrowetting-Induced Coalescence of Sessile Droplets in Viscous Medium

Langmuir. 2023 Apr 11;39(14):4917-4923. doi: 10.1021/acs.langmuir.2c03194. Epub 2023 Mar 30.

Abstract

Manipulating the coalescence of microdroplets has recently gained enormous attention in digital microfluidics and biological and chemical industries. Here, coalescence between two sessile droplets is induced by spreading them due to electrowetting. The electrocoalescence dynamics is investigated for a wide range of operating parameters such as electrowetting number, Ohnesorge number, driving frequency, and drop to surrounding medium viscosity ratio. Here, the characteristic time scale from the classical lubrication theory is modified with an additional driving and resisting force due to the electrostatic pressure force and liquid-liquid viscous dissipation, respectively. With the revised characteristic time scale, a universal bridge growth is shown between the two merging droplets following a 1/3 power law during early coalescence followed by a long-range linear variation. To ensure precise control on droplet coalescence, a geometric analysis is also performed to define the initial separation distance.