Fetal MRI at 3 T: Principles to Optimize Success

Radiographics. 2023 Apr;43(4):e220141. doi: 10.1148/rg.220141.

Abstract

Fetal MRI has emerged as a cornerstone of prenatal imaging, helping to establish the correct diagnosis in pregnancies affected by congenital anomalies. In the past decade, 3 T imaging was introduced as an alternative to increase the signal-to-noise ratio (SNR) of the pulse sequences and improve anatomic detail. However, imaging at a higher field strength is not without challenges. Many artifacts that are barely appreciable at 1.5 T are amplified at 3 T. A systematic approach to imaging at 3 T that incorporates appropriate patient positioning, a thoughtful protocol design, and sequence optimization minimizes the impact of these artifacts and allows radiologists to reap the benefits of the increased SNR. The sequences used are the same at both field strengths and include single-shot T2-weighted, balanced steady-state free-precession, three-dimensional T1-weighted spoiled gradient-echo, and echo-planar imaging. Synergistic use of these acquisitions to sample various tissue contrasts and in various planes provides valuable information about fetal anatomy and pathologic conditions. In the authors' experience, fetal imaging at 3 T outperforms imaging at 1.5 T for most indications when performed under optimal circumstances. The authors condense the cumulative experience of fetal imaging specialists and MRI technologists who practice at a large referral center into a guideline covering all major aspects of fetal MRI at 3 T, from patient preparation to image interpretation. © RSNA, 2023 Quiz questions for this article are available in the supplemental material.

MeSH terms

  • Contrast Media
  • Female
  • Fetus / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging* / methods
  • Pregnancy
  • Prenatal Diagnosis* / methods
  • Signal-To-Noise Ratio

Substances

  • Contrast Media