Accuracy Analysis of a New Data Processing Method for Landslide Monitoring Based on Unmanned Aerial System Photogrammetry

Sensors (Basel). 2023 Mar 14;23(6):3097. doi: 10.3390/s23063097.

Abstract

One of the most commonly used surveying techniques for landslide monitoring is a photogrammetric survey using an Unmanned Aerial System (UAS), where landslide displacements can be determined by comparing dense point clouds, digital terrain models, and digital orthomosaic maps resulting from different measurement epochs. A new data processing method for calculating landslide displacements based on UAS photogrammetric survey data is presented in this paper, whose main advantage is the fact that it does not require the production of the above-mentioned products, enabling faster and simpler displacement determination. The proposed method is based on matching features between the images from two different UAS photogrammetric surveys and calculating the displacements based only on the comparison of two reconstructed sparse point clouds. The accuracy of the method was analyzed on a test field with simulated displacements and on an active landslide in Croatia. Moreover, the results were compared with the results obtained with a commonly used method based on comparing manually tracked features on orthomosaics from different epochs. Analysis of the test field results using the presented method show the ability to determine displacements with a centimeter level accuracy in ideal conditions even with a flight height of 120 m, and on the Kostanjek landslide with a sub-decimeter level accuracy.

Keywords: landslide; monitoring; photogrammetry; structure from motion; unmanned aerial systems.

Grants and funding

This research received no external funding.