Effects of ultrasonic vibration on microstructure and mechanical properties of 1Cr12Ni3MoVN alloy fabricated by directed energy deposition

Ultrasonics. 2023 Jul:132:106989. doi: 10.1016/j.ultras.2023.106989. Epub 2023 Mar 25.

Abstract

Due to the rapid melting and solidification during directed energy deposition (DED) process, the defects and columnar crystals are likely to generate in the deposition layers, which reduce the quality and performance of the whole parts. Therefore, in order to improve the microstructure and mechanical properties of 1Cr12Ni3MoVN alloy manufactured by DED method, ultrasonic vibration (UV) has been employed to assist directed energy deposition process in this work. The results indicate that the high-intensity ultrasonic vibration can weaken the epitaxy growth tendency of crystal grains, and significantly improve plasticity while keeping an approximate strength. In addition, a two-dimensional numerical model is established to simulate the effect of ultrasonic vibration in the molten pool. The simulation results show that ultrasonic vibration remarkably improves the flow velocity and pressure in the molten pool, inducing the cavitation effect that breaks dendritic crystal and affects crystal characteristics. Meanwhile, the acoustic streaming effect changes the thermodynamic conditions and promotes high-temperature diffusion, which uniforms temperature distribution and reduces the temperature gradient in the molten pool. Thus the reduced temperature gradient G and raised solidification growth rate R promote the formation of fine equiaxed crystal characteristics after UV treatment. The product G × R increases and the ratio G/R decreases after UV treatment, resulting in the formation of fine equiaxed crystals.

Keywords: 1Cr12Ni3MoVN alloy; Directed energy deposition; Microstructure and mechanical properties; Ultrasonic vibration.