Effects of hyperprotein diet on anxiety, haemodynamics and morphofunctional aspects of the heart of Wistar rats

Exp Physiol. 2023 Jun;108(6):818-826. doi: 10.1113/EP090638. Epub 2023 Mar 29.

Abstract

New findings: What is the central question of this study? The consumption of a high-protein diet has been associated with an anxiogenic factor that can influence anxiety and possible cardiovascular changes: does the consumption of a high-protein diet interfere with anxiety, haemodynamics and morphofunctional aspects of the heart of Wistar rats? What is the main finding and its importance? Our study showed that the high-protein diet did not interfere with anxiety and haemodynamics. The animals in the hyperproteic group showed positive heart adaptations characterized by less work and lower heart rate without impairing ejection fraction and systemic blood pressure.

Abstract: Anxiety is a mechanism preparatory to a response in situations of threat and danger, involving behavioural, affective and physiological factors. Protein-based foods have a high concentration of amino acids which perform multiple functions, including in the biosynthesis of excitatory transmitters for the central nervous system. In recent years, adherence to high-protein diets has been gaining ground in society, on the basis that it brings benefits to the musculoskeletal system and cardiovascular health. The aim of the present study was to investigate the effect of a high-protein diet in a state of anxiety and to investigate morphofunctional cardiovascular effects of a high-protein diet in Wistar rats. The experiment lasted 8 weeks and two groups of male rats were submitted to either a normoproteic or a hyperproteic diet. Anxiety was assessed using the plus maze test and cardiovascular morphofunctional aspects using transthoracic echocardiography and invasive measurements of femoral blood pressure. There was no statistically significant difference in the anxiety test, but the hyperproteic group was more agitated, with greater displacement during the test. Changes were found in systolic and end-diastolic volume, left ventricular diameter in systole and heart rate, which were significantly lower in the hyperproteic group, and there was an increase in the thickness of the interventricular septum in diastole. The results showed no influence of the higher protein diet on the animals' anxiety, body weight and haemodynamics.

Keywords: anxiety; heart; high protein diet.

MeSH terms

  • Animals
  • Anxiety
  • Blood Pressure / physiology
  • Diet*
  • Heart Ventricles*
  • Male
  • Rats
  • Rats, Wistar