The Study of Crystallization Behavior, Microcellular Structure and Thermal Properties of Glass-Fiber/Polycarbonate Composites

Polymers (Basel). 2023 Mar 21;15(6):1546. doi: 10.3390/polym15061546.

Abstract

Polycarbonate (PC) foam is a versatile material with excellent properties, but its low thermal stability limits its application in high-temperature environments. The aim of this study was to improve the thermal stability of PC foam by adding glass fibers (GF) and to investigate the effect of GF on PC crystallization behavior and PC foam cell morphology. This study was motivated by the need to improve the performance of PC foams in various industries, such as construction, automotive, and medical. To achieve this goal, PC/GF composites were prepared by extrusion, and PC/GF composite foams were produced using a batch foaming process with supercritical carbon dioxide (SC-CO2) as the blowing agent. The results showed that the addition of GF accelerated the SC-CO2-induced crystallization stability of PC and significantly increased the cell density to 4.6 cells/cm3. In addition, the thermal stability of PC/GF foam was improved, with a significant increase in the residual carbon rate at 700 °C and a lower weight loss rate than PC matrix. Overall, this study highlights the potential of GF as a PC foam reinforcement and its effect on thermal and structural properties, providing guidance for industrial production and applications.

Keywords: crystallization behavior; polycarbonate composite; supercritical CO2 microinjection; thermal properties.

Grants and funding

The authors at the Henan University of Technology and Zhengzhou University would like to acknowledge the support of the Natural Science Foundation of Henan Province (Grant No. 222300420428); Key Laboratory of Materials processing and Mold (Zhengzhou University) (Grant No. NERC202202); National Natural Science Foundation of China (61973103, and 51775169); Training Program of Young Key Teachers in Henan University of Technology (2018); Innovative Funds Plan of Henan University of Technology (2020ZKCJ26); Science and Technology Project of Henan Province (222102220018); Excellent Program for Overseas Students in 2022; Open Project of State Key Laboratory of Solid Lubrication (LSL-2006); and Excellent Youth Project of Henan Province (222300420039).