Size-Controllable Nanosystem with Double Responsive for Deep Photodynamic Therapy

Pharmaceutics. 2023 Mar 14;15(3):940. doi: 10.3390/pharmaceutics15030940.

Abstract

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, a poor tissue penetration of activation light and low target specificity seriously hindered the clinical application of PDT. Here, we designed and constructed a size-controllable nanosystem (UPH) with inside-out responsive for deep PDT with enhanced biosafety. To obtain nanoparticles with the best quantum yield, a series of core-shell nanoparticles (UCNP@nPCN) with different thicknesses were synthesized by a layer-by-layer self-assembly method to incorporate a porphyritic porous coordination network (PCN) onto the surface of upconverting nanoparticles (UCNPs), followed by coating with hyaluronic acid (HA) on the surface of nanoparticles with optimized thickness to form the UPH nanoparticles. With the aid of HA, the UPH nanoparticles were capable of preferentially enriching in tumor sites and specific endocytosis by CD44 receptors as well as responsive degradation by hyaluronidase in cancer cells after intravenous administration. Subsequently, after being activated by strong penetrating 980 nm near-infrared light (NIR), the UPH nanoparticles efficiently converted oxygen into strongly oxidizing reactive oxygen species based on the fluorescence resonance energy transfer (FRET) effect, thereby significantly inhibiting tumor growth. Experimental results in vitro and in vivo indicated that such dual-responsive nanoparticles successfully realize the photodynamic therapy of deep-seated cancer with negligible side effects, which showed great potential for potential clinical translational research.

Keywords: cancer; metal-organic framework; photodynamic therapy; self-assembly; upconverting nanoparticle.

Grants and funding

This work was supported by the National Natural Science Foundation of China (52203170, 22135005, 51833007 and 51988102), the Natural Science Foundation of Jiangsu Province (BK20220384).