Global and Partial Effect Assessment in Metabolic Syndrome Explored by Metabolomics

Metabolites. 2023 Mar 2;13(3):373. doi: 10.3390/metabo13030373.

Abstract

In nutrition and health research, untargeted metabolomics is actually analyzed simultaneously with clinical data to improve prediction and better understand pathological status. This can be modeled using a multiblock supervised model with several input data blocks (metabolomics, clinical data) being potential predictors of the outcome to be explained. Alternatively, this configuration can be represented with a path diagram where the input blocks are each connected by links directed to the outcome-as in multiblock supervised modeling-and are also related to each other, thus allowing one to account for block effects. On the basis of a path model, we show herein how to estimate the effect of an input block, either on its own or conditionally to other(s), on the output response, respectively called "global" and "partial" effects, by percentages of explained variance in dedicated PLS regression models. These effects have been computed in two different path diagrams in a case study relative to metabolic syndrome, involving metabolomics and clinical data from an older men's cohort (NuAge). From the two effects associated with each path, the results highlighted the complementary information provided by metabolomics to clinical data and, reciprocally, in the metabolic syndrome exploration.

Keywords: NuAge cohort; clinical data; global effect; metabolic syndrome; metabolomics; multiblock; partial correlation; partial effect.

Grants and funding

This research received no external funding. The NuAge Database and Biobank is financially supported by the Fonds de recherche du Québec (FRQ; 2020-VICO-279753), the Quebec Network for Research on Aging, a thematic network funded by the Fonds de Recherche du Québec-Santé (FRQS) and by the Merck-Frost Chair funded by La Fondation de l’Université de Sherbrooke.