Study on the Origin and Evolution of Femtosecond Laser-Induced Surface Structures: LIPSS, Quasi-Periodic Grooves, and Aperiodic Micro-Ridges

Materials (Basel). 2023 Mar 9;16(6):2184. doi: 10.3390/ma16062184.

Abstract

We investigate the evolution mechanisms of the laser-induced periodic surface structures (LIPSS) and quasi-periodic grooves that are formed on the surface of monocrystalline silicon (mono-Si) when exposed to femtosecond laser radiation of different pulse duration, state of polarization, and fluence. The conditions required for producing LIPSS-free complex micro-ridge patterns are elaborated. The LIPSS evolution mechanism is explained in terms of scattering/interference-based phenomena. To establish the basis for our interpretation, single femtosecond pulses of different pulse durations are irradiated on mono-Si. The absence/appearance of LIPSS rudiments is explained in the context of spectral bandwidth and the associated effects on the intensity of the central wavelength. Shorter fs pulses of a wider bandwidth are employed to induce LIPSS-free micro-ridge patterns. It is demonstrated that the resultant micro-ridge patterns depend on the laser fluence distribution and can be manipulated through laser polarization. The curved morphology of LIPSS rudiments and the evolution mechanism of low- and high-spatial frequency LIPSS, i.e., LSFL and HSFL, are discussed. Finally, it is demonstrated that the consolidated quasi-periodic grooves result from HSFL welding together groups of LSFL. Although our findings are based on fs laser interaction with mono-Si, the results can also be applied to many other materials.

Keywords: LIPSS, LSFL, HSFL; femtosecond laser; micro-ridges; polarization; quasi-periodic grooves; surface structuring.