Non-Destructive Eggshell Strength Assessment Using Hertz Contact Theory Part I: Theory and Applicability

Foods. 2023 Mar 11;12(6):1189. doi: 10.3390/foods12061189.

Abstract

In the egg industry, fast and highly reliable quality measurements are crucial. This study presents a novel method based on Hertz contact theory that allows for non-destructive determination of eggshell strength. The goal of the study was to evaluate the material strength (Young's Modulus) and structural strength (stiffness) of eggshells. To this end, an experimental setup was constructed to measure the collision of an eggshell with a small steel ball, which was recorded using a laser vibrometer. The study analyzed a sample of 120 eggs and found a correlation of 0.85 between the traditional static stiffness measured during quasi-static compression tests and the stiffness obtained from the Hertz contact theory. The results show that Hertz contact theory is valid for small steel spheres impacting eggshells, while a sensitivity analysis indicated that the most important factor in determining the strength of the eggshell is the contact duration between the egg and the impactor. These results open up the possibility of grading eggs based on their shell strength in a non-destructive manner.

Keywords: Hertz contact theory; Young’s Modulus; eggshell impact; eggshell strength; non-destructive measurement; quasi-static compression.