Physically and Chemically Crosslinked, Tannic Acid Embedded Linear PEI-Based Hydrogels and Cryogels with Natural Antibacterial and Antioxidant Properties

Biomedicines. 2023 Feb 25;11(3):706. doi: 10.3390/biomedicines11030706.

Abstract

Linear polyethyleneimine (L-PEI) was obtained from the acidic hydrolysis of poly(2-ethyl-2-oxazoline) and employed in the synthesis of physically crosslinked L-PEI hydrogel, PC-L-PEIH, chemically crosslinked L-PEI hydrogel, CC-L-PEIH, and cryogels, CC-L-PEIC. The preparation of L-PEI-based hydrogel networks was carried out in two ways: 1) by cooling the L-PEI solution from 90 °C to room temperature, and 2) by crosslinking L-PEI chains with a crosslinker, glycerol diglycidyl ether = 20 °C for CC-L-PEIC. Furthermore, a polyphenolic compound, tannic acid (TA), with superior antibacterial, antioxidant, and anti-inflammatory properties as an active biomedical functional agent, was encapsulated during the synthesis process within L-PEI-based hydrogels and cryogels, at 10% and 25% (w/w) based on the L-PEI amount. A linear and higher TA release was observed from physically crosslinked PEI-based hydrogels containing 10% and 25% TA-containing PC-L-PEI/TAH within 6 h, with 9.5 ± 05 mg/g and 60.2 ± 3.8 mg/g cumulative released amounts, respectively. A higher antioxidant activity was observed for 25% TA containing PC-L-PEI/TAH with 53.6 ± 5.3 µg/mL total phenol content and 0.48 ± 0.01 µmole Trolox equivalent/g. The minimum bactericidal concentration (MBC) of PC-L-PEIH and CC-L-PEIC networks against both E. coli (ATCC 8739) and Gram-positive B. subtilis (ATCC 6633) bacteria was determined at 5 mg/mL, whereas the MBC value of 10 mg/mL for CC-L-PEIH networks against the same bacteria was achieved.

Keywords: antibacterial; antioxidant; controllable drug release; hydrogel/cryogel; linear polyethyleneimine; polyethyleneimine/tannic acid hybrid; tannic acid release.

Grants and funding

This research received no external funding.