Intuitionistic fuzzy fairly operators and additive ratio assessment-based integrated model for selecting the optimal sustainable industrial building options

Sci Rep. 2023 Mar 28;13(1):5055. doi: 10.1038/s41598-023-31843-x.

Abstract

In the past few years, the private sectors and industries have focused their attention on sustainable development goals to achieve the better and more sustainable future for all. To accomplish a sustainable community, one requires to better recognize the fundamental indicators and selects the most suitable sustainable policies in diverse regions of the community. Considering the huge impact of construction industry on sustainable development, very less research efforts have been made to obtain worldwide sustainable elucidations for this type of industry. As a large sector of construction industry, industrial buildings consume enormous amounts of energy and financial assets, and play a key character in job creation and life quality improvement in the community. In order to assess the sustainable industrial buildings by means of multiple indicators, the present study introduces a hybrid multi-criteria decision-making methodology which integrates the fairly aggregation operator, the MEthod based on the Removal Effects of Criteria (MEREC), the stepwise weight assessment ratio analysis (SWARA) and the additive ratio assessment (ARAS) methods with intuitionistic fuzzy set (IFS). In this respect, firstly new intuitionistic fuzzy weighted fairly aggregation operators are proposed and then employed to aggregate the decision information in the proposed hybrid method. This operator overcomes the limitations of basic intuitionistic fuzzy aggregation operators. To find the criteria weights, an integrated model is presented based on the MEREC for objective weights and the SWARA for subjective weights of indicators under IFS context. To rank the sustainable industrial buildings, an integrated ARAS method is employed from uncertain perspective. Further, a case study concerning sustainable industrial buildings evaluation is presented to illustrate the superiority and practicality of the developed methodology. The advantages of the developed approach are highlighted in terms of stability and reliability by comparison with some of the existing methods.