Fixation-related visual mismatch negativity

J Vis. 2023 Mar 1;23(3):17. doi: 10.1167/jov.23.3.17.

Abstract

Vision under natural conditions could be studied by combining electroencephalogram (EEG) and eye tracking as well as using saccades as triggers for the onset of the fixation-related potentials (FRPs) and for the oculomotor inhibition (OMI) that follows every saccade. The result of this analysis is thought to be equivalent to the event-related response following a peripheral preview. Previous studies that measured responses to visual deviants in a sequence of flashed stimuli found an increased negativity in the occipital N1 component (visual mismatch negativity [vMMN]), and prolonged saccadic inhibition for unexpected events. The aim of the current study was to develop an oddball paradigm in constrained natural-viewing and determine whether a similar mismatched FRP and prolonged OMI for deviance could be found. To this end, we developed a visual oddball paradigm on a static display to generate expectancy and surprise across successive saccades. Observers (n = 26) inspected, one after the other, seven small patterns of E and an inverted E arranged on the screen along a horizontal path, with one frequent (standard) and one rare (deviant), looking for a superimposed tiny dot target in each 5-second trial. Our results show a significantly larger FRP-N1 negativity for the deviant, compared with the standard and prolonged OMI of the following saccade, as previously found for transient oddballs. Our results show, for the first time, prolonged OMI and stronger fixation-related N1 to a task-irrelevant visual mismatch (vMMN) in natural, but task-guided viewing. These two signals combined could serve as markers of prediction error in free viewing.

MeSH terms

  • Electroencephalography*
  • Evoked Potentials, Visual*
  • Eye Movements
  • Eye-Tracking Technology
  • Humans
  • Saccades
  • Visual Perception / physiology