Characterization of Cyclic Olefin Copolymers for Insulin Reservoir in an Artificial Pancreas

J Funct Biomater. 2023 Mar 4;14(3):145. doi: 10.3390/jfb14030145.

Abstract

Type-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas. However, some improvements are still required, including the optimal biomaterials and technologies to produce the implantable insulin reservoir. Here, we discuss the employment of two types of cyclic olefin copolymers (Topas 5013L-10 and Topas 8007S-04) for an insulin reservoir fabrication. After a preliminary thermomechanical analysis, Topas 8007S-04 was selected as the best material to fabricate a 3D-printed insulin reservoir due to its higher strength and lower glass transition temperature (Tg). Fiber deposition modeling was used to manufacture a reservoir-like structure, which was employed to assess the ability of the material to prevent insulin aggregation. Although the surface texture presents a localized roughness, the ultraviolet analysis did not detect any significant insulin aggregation over a timeframe of 14 days. These interesting results make Topas 8007S-04 cyclic olefin copolymer a potential candidate biomaterial for fabricating structural components in an implantable artificial pancreas.

Keywords: 3D-printing; Topas; additive manufacturing; diabetes; insulin aggregation; mechanical characterization; surface roughness; thermal characterization.