Orthogonal plating of distal femur fractures: A biomechanical comparison with plate-nail and parallel plating constructs

J Orthop. 2023 Feb 9:37:34-40. doi: 10.1016/j.jor.2023.02.003. eCollection 2023 Mar.

Abstract

Purpose: This study compared the biomechanical properties of orthogonal plating with plate-nail and parallel plating constructs for supracondylar distal femur fractures.

Methods: A supracondylar distal femur fracture was simulated using 15 synthetic osteoporotic femurs. Constructs included: (1) plate-nail (lateral locked distal femoral plate + retrograde intramedullary nail); (2) parallel plating (lateral locked distal femoral plate + medial 4.0 mm compression plate); and (3) orthogonal plating (lateral locked distal femoral plate + posterior one-third tubular plate). Specimens underwent nondestructive loading, fatigue loading, and loading to failure. Gapping at the fracture was measured using a three-dimensional motion capture system. Baseline torsional and axial stiffness, stiffness and strain after fatigue loading, and load to failure were determined. A case example of orthogonal plating is also presented.

Results: There was no difference in baseline torsional (p = 0.51) and axial stiffness (p = 0.53). Stiffness after fatigue loading was highest with parallel plating, with no difference between the plate-nail and orthogonal plating constructs (p = 0.84). Strain after fatigue loading was lowest in the parallel plating group (0.54 ± 0.19%), followed by the plate-nail (2.89 ± 0.83%) and orthogonal plating groups (3.04 ± 0.51%).

Conclusion: Orthogonal plating demonstrated comparable baseline stiffness to plate-nail and parallel plating constructs, and similar biomechanical performance in fatigue loading to plate-nail constructs. All specimens had ≤3% strain after fatigue loading, suggesting sufficient stability for fracture healing. The benefits of enhanced stability from dual-implant fixation may be achieved through orthogonal plating while avoiding an additional medial surgical approach, and therefore warrants further investigation as a novel alternative for distal femur fracture fixation.

Keywords: Biomechanics; Distal femur fracture; Dual plate; Plate nail; Supplemental fixation.