Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis

Nat Commun. 2023 Mar 27;14(1):1680. doi: 10.1038/s41467-023-37379-y.

Abstract

Profiling tumors at single-cell resolution provides an opportunity to understand complexities underpinning lymph-node metastases in head and neck squamous-cell carcinoma. Single-cell RNAseq (scRNAseq) analysis of cancer-cell trajectories identifies a subpopulation of pre-metastatic cells, driven by actionable pathways including AXL and AURK. Blocking these two proteins blunts tumor invasion in patient-derived cultures. Furthermore, scRNAseq analyses of tumor-infiltrating CD8 + T-lymphocytes show two distinct trajectories to T-cell dysfunction, corroborated by their clonal architecture based on single-cell T-cell receptor sequencing. By determining key modulators of these trajectories, followed by validation using external datasets and functional experiments, we uncover a role for SOX4 in mediating T-cell exhaustion. Finally, interactome analyses between pre-metastatic tumor cells and CD8 + T-lymphocytes uncover a putative role for the Midkine pathway in immune-modulation and this is confirmed by scRNAseq of tumors from humanized mice. Aside from specific findings, this study demonstrates the importance of tumor heterogeneity analyses in identifying key vulnerabilities during early metastasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes
  • Carcinoma, Squamous Cell* / pathology
  • Head and Neck Neoplasms* / pathology
  • Immune Evasion
  • Lymphocytes, Tumor-Infiltrating
  • Mice
  • Squamous Cell Carcinoma of Head and Neck / pathology