Multimodal imaging in Best Vitelliform Macular Dystrophy: Literature review and novel insights

Eur J Ophthalmol. 2024 Jan;34(1):39-51. doi: 10.1177/11206721231166434. Epub 2023 Mar 27.

Abstract

Best Vitelliform Macular Dystrophy (BVMD) is a dominantly inherited retinal disease caused by dominant variants in the BEST1 gene. The original classification of BVMD is based on biomicroscopy and color fundus photography (CFP); however, advancements in retinal imaging provided unique structural, vascular, and functional data and novel insights on disease pathogenesis. Quantitative fundus autofluorescence studies informed us that lipofuscin accumulation, the hallmark of BVMD, is unlikely to be a primary effect of the genetic defect. It could be due to a lack of apposition between photoreceptors and retinal pigment epithelium in the macula with subsequent accumulation of shed outer segments over time. Optical Coherence Tomography (OCT) and adaptive optics imaging revealed that vitelliform lesions are characterized by progressive changes in the cone mosaic corresponding to a thinning of the outer nuclear layer and then disruption of the ellipsoid zone, which are associated with a decreased sensitivity and visual acuity. Therefore, an OCT staging system based on lesion composition, thus reflecting disease evolution, has been recently developed. Lastly, the emerging role of OCT Angiography proved a greater prevalence of macular neovascularization, the majority of which are non-exudative and develop in late disease stages. In conclusion, effective diagnosis, staging, and clinical management of BVMD will likely require a deep understanding of the multimodal imaging features of this disease.

Keywords: BEST1; OCT; OCTA; best vitelliform macular dystrophy; bestrophinopathy; macular neovascularization.; multimodal imaging.

Publication types

  • Review

MeSH terms

  • Bestrophins / genetics
  • Fluorescein Angiography / methods
  • Humans
  • Macula Lutea* / pathology
  • Multimodal Imaging
  • Retina / pathology
  • Retinal Pigment Epithelium / pathology
  • Tomography, Optical Coherence / methods
  • Vitelliform Macular Dystrophy* / diagnostic imaging
  • Vitelliform Macular Dystrophy* / genetics

Substances

  • Bestrophins
  • BEST1 protein, human