Regulating the Electronic Structure of Metal Nanoclusters by Longitudinal Single-Dithiolate Substitution

J Phys Chem Lett. 2023 Apr 6;14(13):3216-3221. doi: 10.1021/acs.jpclett.3c00238. Epub 2023 Mar 27.

Abstract

It is significant but challenging to understand the property evolution of metal nanoclusters by orientated regulation of the electronic structure. Previous research has demonstrated that the optical properties of metal nanoclusters with anisotropic structures are greatly impacted by their longitudinal electronic structure. However, the manipulation of optical properties of metal nanoclusters by regulating their electronic structure through longitudinal dithiolate substitutions has not yet been reported. In this study, we first achieved the longitudinal single-dithiolate replacement of metal nanoclusters and obtained two novel nanoclusters: Au28(SPh-tBu)18(SCH2SCH2S) and Au28(SPh-tBu)18(SCH2CH2CH2S). Both experimental and theoretical results demonstrated the regulation of the electronic structure (dipole moment) in the z (longitudinal) and x directions, resulting in absorption redshift and photoluminescence (polarity) enhancement. These findings not only deepen the understanding of the property-electronic structure correlation of metal nanoclusters but also provide guidance for their subtle property tuning.