New age chloride shielding strategies for corrosion resistant direct seawater splitting

Chem Commun (Camb). 2023 Apr 13;59(31):4578-4599. doi: 10.1039/d3cc00416c.

Abstract

Electrocatalytic direct seawater splitting is considered to be one of the most desirable and necessary approach to produce substantial amount of green hydrogen to meet the energy demand. However, practical seawater splitting remains far-fetched due to the electrochemical interference of multiple elements present in seawater, among which chlorine chemistry is the most aggravating one, causing severe damages to electrodes. To overcome such limitations, apart from robust electrocatalyst design, electrolyte engineering along with in depth corrosion engineering are essential aspects, which needs to be thoroughly judged and explored. Indeed, extensive studies and various approaches including smart electrolyzer design have been attempted in the last couple of years on this matter. The present review offers a comprehensive discussion on various strategies to achieve effective and sustainable direct seawater splitting, avoiding chlorine electrochemistry to achieve industry-level performances.

Publication types

  • Review