One-pot green synthesis of silver nanoparticles using brittle star Ophiocoma scolopendrina: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of organic dyes

Heliyon. 2023 Mar 16;9(3):e14538. doi: 10.1016/j.heliyon.2023.e14538. eCollection 2023 Mar.

Abstract

In the current study, aqueous extract of O. scolopendrina (OSE) was used to synthesize AgNPs in a simple and environmentally friendly manner. The biosynthesized OSE-AgNPs were also assessed for its catalytic, antibacterial, anti-diabetic, antioxidant and dye degradation properties. The techniques like UV-visible spectroscopic examinations, TEM, SEM, TGA, zeta potential and FT-IR were used in the characterization investigations. The bioproduction of OSE-AgNPs was preliminary confirmed by UV-visible spectroscopic based investigation followed by microscopic visualization. The synthesized OSE-AgNPs exhibited a reddish brown colour and nearly spherical forms with sizes between 5 and 50 nm quantified by TEM and SEM. The attendance of functional groups like -OH and -NH present in OSE caps on the AgNPs surface was confirmed by FTIR analysis. Interestingly, in the presence of OSE-AgNPs, the degradation of dyes (CV, 95% and EY, 96% in 15 min) were noticeably accelerated. Further, OSE-AgNPs demonstrated substantial antibacterial activity; robust antioxidant properties andnotable anti-diabetic activities. This is the first account on the biosynthetic process of AgNPs using the aqueous extract of O. scolopendrina.

Keywords: Antibacterial; Antidiabetic; Antioxidant; Brittle star; Catalytic activity; Ophiocomascolopendrina; Organic dyes; Silver nanoparticles.