Dynamic topography analysis of the cornea and its application to the diagnosis of keratoconus

Comput Biol Med. 2023 May:158:106800. doi: 10.1016/j.compbiomed.2023.106800. Epub 2023 Mar 21.

Abstract

Propose: To establish a dynamic topography analysis method which simulates the dynamic biomechanical response of the cornea and reveals the variations of such response within the corneal surface, and thereafter to propose and clinically evaluate new parameters for the definite diagnosis of keratoconus.

Methods: 58 normal (Normal) and 56 keratoconus (KC) subjects were retrospectively included. Personalized corneal air-puff model was established using corneal topography data by Pentacam for each subject, and the dynamic deformation under air-puff loading was simulated using finite element method, which then enabled calculations of corneal biomechanical parameters of the entire corneal surface along any meridian. Variations in these parameters across different meridians and between different groups were explored by two-way repeated measurement analysis of variance. New dynamic topography parameters were proposed as the range of the calculated biomechanical parameters within the entire corneal surface, and the AUC of ROC curve was used to compare the diagnostic efficiency of newly proposed and existing parameters.

Results: Corneal biomechanical parameters measured in different meridians varied significantly which were more pronounced in KC group due to its irregularity in corneal morphology. Considering such between-meridian variations thus led to improved diagnostic efficiency of KC as presented by the proposed dynamic topography parameter rIR with an AUC of 0.992 (sensitivity: 91.1%, specificity: 100%), significantly better than the current topography and biomechanical parameters.

Conclusions: The diagnosis of keratoconus may be affected by the significant variations of corneal biomechanical parameters due to corneal morphology irregularity. By considering such variations, the current study established the dynamic topography analysis process which benefits from the high accuracy of (static) corneal topography measurement while improving its diagnosis capacity. The proposed dynamic topography parameters, especially the rIR parameter, showed comparable or better diagnostic efficiency for KC than existing topography and biomechanical parameters, which can be of great clinical significance for clinics without access to instrument for biomechanical evaluations.

Keywords: Corneal topography; Dynamic deformation; Keratoconus; Numerical simulation; Ocular biomechanics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Cornea
  • Corneal Topography / methods
  • Humans
  • Keratoconus* / diagnosis
  • ROC Curve
  • Retrospective Studies