Exogenous application of carbon nanoparticles alleviates drought stress by regulating water status, chlorophyll fluorescence, osmoprotectants, and antioxidant enzyme activity in Capsicum annumn L

Environ Sci Pollut Res Int. 2023 Apr;30(20):57423-57433. doi: 10.1007/s11356-023-26606-0. Epub 2023 Mar 25.

Abstract

Drought is one of the most important abiotic stresses that has a huge negative effect on crop yield. Carbon nanoparticles (CNPs) have received greater attention for their impact on the plants under abiotic stress conditions. However, it is urgently required to apply CNPs to the chili pepper (Capsicum annuum L. cv. Kaskada), which has not yet been studied. The goal of this study was to find out how CNPs affect the growth of chili pepper plants, chlorophyll pigments, proline content, and the activity of antioxidant enzymes when the plants are stressed by drought. Therefore, we synthesized and functionalized CNPs of oil fly ash by one-pot ball milling fabrication. X-ray photoelectron spectroscopy (XPS) was used to identify oxidative moieties on the CNPs surface after exposure to nitric and acetic acids. In the present study, functionalized CNPs were sprayed onto the leaves of 20-day-old plants at various concentrations (6 and 12 mg L-1) to determine their effects. We demonstrate that drought stress considerably reduces the plant height, fresh weight (FW), and dry weight (DW). Nevertheless, the exogenous application of functionalized CNPs caused an increase in relative water content (RWC), chlorophyll stability index (CSI), and chlorophyll fluorescence (Fv/Fm) under drought stress. Exogenous functionalized CNPs dramatically increased proline content under drought by reducing abscisic acid (ABA) content in the leaves. When subjected to drought stress, functionalized CNPs boosted antioxidant activities such as superoxide dismutase (SOD) and catalase (CAT) activity. Overall, the positive effects of CNPs on chili pepper seedlings open up new possibilities for developing innovative agricultural techniques, especially when plants are grown in drought conditions.

Keywords: Antioxidant enzymes; Chlorophyll; Crops; Nanotechnology; Oxidative damage.

MeSH terms

  • Antioxidants / pharmacology
  • Capsicum*
  • Carbon / pharmacology
  • Chlorophyll / pharmacology
  • Droughts
  • Fluorescence
  • Nanoparticles*
  • Proline / pharmacology
  • Water

Substances

  • Antioxidants
  • Water
  • Chlorophyll
  • Proline
  • Carbon