Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly

Small Methods. 2023 Jun;7(6):e2201592. doi: 10.1002/smtd.202201592. Epub 2023 Mar 25.

Abstract

In nature, the hierarchical structure of biological tissues endows them with outstanding mechanics and elaborated functions. However, it remains a great challenge to construct biomimetic hydrogels with well-defined nanostructures and good mechanical properties. Herein, polymerization-induced self-assembly (PISA) is for the first time exploited as a general strategy for nanostructured hydrogels and organogels with tailored nanodomains and outstanding mechanical properties. As a proof-of-concept, PISA of BAB triblock copolymer is used to fabricate hydrogels with precisely regulated spherical nanodomains. These nanostructured hydrogels are strong, tough, stretchable, and recoverable, with mechanical properties correlating to their nanostructure. The outstanding mechanical properties are ascribed to the unique network architecture, where the entanglements of the hydrophilic chains act as slip links that transmit the tension to the micellar crosslinkers, while the micellar crosslinkers dissipate the energy via reversible deformation and irreversible detachment of the constituting polymers. The general feasibility of the PISA strategy toward nanostructured gels is confirmed by the successful fabrication of nanostructured hydrogels, alcogels, poly(ethylene glycol) gels, and ionogels with various PISA formulations. This work has provided a general platform for the design and fabrication of biomimetic hydrogels and organogels with tailorable nanostructures and mechanics and will inspire the design of functional nanostructured gels.

Keywords: nanostructured hydrogels; polymerization-induced self-assembly; triblock copolymer.