Leaching characteristics and pollution risk assessment of potentially harmful elements from coal gangue exposed to weathering for different periods of time

Environ Sci Pollut Res Int. 2023 May;30(22):63200-63214. doi: 10.1007/s11356-023-26525-0. Epub 2023 Mar 24.

Abstract

To explore the leaching behavior and potential degree of pollution that can result from the backfilling of goafs with different types of coal gangue (CG), fresh CG from the Hongqi Coal Mine goaf and surface CG (weathered for 1 year) were selected as the research objects in this study. A series of leaching experiments were carried out using the Ordovician limestone karst waters of the mining areas as the soaking solution. A comparative study on the dissolution characteristics of Fe3+, Mn2+, and SO42- and on the traditional water quality parameters of the two types of CG was conducted. The results showed that the soaked, weathered CG displayed a higher ion dissolution value than fresh CG. The ratio of each ion was as follows: Fe3+ was 1, Mn2+ was 2.86 ~ 68.18, and SO42- was 1.34 ~ 2.09. Over time, the ion concentration of water samples that initially contained high ion concentration values showed a decreasing trend after CG was soaked in these waters, but the values were still in the range of high ion release concentrations. The pH and oxidation‒reduction potential (ORP) values of the leachate of both CG types indicated that the leachates were weakly alkaline and weakly oxidizing, and the overall change in total dissolved solids (TDS) was small and consistent with the SO42- trend. SO42- in the leachate of the weathered CG showed a more significant correlation with the pH and TDS of the soaking solution, and it was the major pollutant. According to the geoaccumulation index evaluation, weathered CG had higher pollution potential than fresh CG. Fe3+ presented a slight and moderate risk for contamination.

Keywords: CG; Degree of weathering; Geoaccumulation index; Harmful contaminants; Karst water; Leaching test.

MeSH terms

  • Coal Mining*
  • Coal*
  • Mining
  • Risk Assessment
  • Water Quality
  • Weather

Substances

  • Coal