Ultra-thin gate insulator of atomic-layer-deposited AlO x and HfO x for amorphous InGaZnO thin-film transistors

Nanotechnology. 2023 Apr 12;34(26). doi: 10.1088/1361-6528/acc742.

Abstract

To strengthen the downscaling potential of top-gate amorphous oxide semiconductor (AOS) thin-film transistors (TFTs), the ultra-thin gate insulator (GI) was comparatively implemented using the atomic-layer-deposited (ALD) AlOxand HfOx. Both kinds of high-kGIs exhibit good insulating properties even with the physical thickness thinning to 4 nm. Compared to the amorphous indium-gallium-zinc oxide (a-IGZO) TFTs with 4 nm AlOxGI, the 4 nm HfOxenables a larger GI capacitance, while the HfOx-gated TFT suffers higher gate leakage current and poorer subthreshold slope, respectively originating from the inherently small band offset and the highly defective interface between a-IGZO and HfOx. Such imperfect a-IGZO/HfOxinterface further causes noticeable positive bias stress instability. Both ALD AlOxand HfOxwere found to react with the underneath a-IGZO channel to generate the interface defects, such as metal interstitials and oxygen vacancies, while the ALD process of HfOxgives rise to a more severe reduction of a-IGZO. Moreover, when such a defective interface is covered by the top gate, it cannot be readily restored using the conventional oxidizing post-treatments and thus desires the reduction-resistant pre-treatments of AOSs.

Keywords: AlO x; HfO x; a-IGZO; atomic-layer-deposition (ALD); gate insulators (GIs); thin-film transistors (TFTs).