Beyond eves and cracks: An interdisciplinary study of socio-spatial variation in urban malaria transmission in Ethiopia

PLOS Glob Public Health. 2022 Apr 22;2(4):e0000173. doi: 10.1371/journal.pgph.0000173. eCollection 2022.

Abstract

During the past century, the global trend of reduced malaria transmission has been concurrent with increasing urbanization. Although urbanization has traditionally been considered beneficial for vector control, the adaptation of malaria vectors to urban environments has created concerns among scientific communities and national vector control programs. Since urbanization rates in Ethiopia are among the highest in the world, the Ethiopian government developed an initiative focused on building multi-storied units organized in condominium housing. This study aimed to develop an interdisciplinary methodological approach that integrates architecture, landscape urbanism, medical anthropology, and entomology to characterize exposure to malaria vectors in this form of housing in three condominiums in Jimma Town. Mosquitoes were collected using light trap catches (LTCs) both indoor and outdoor during 2019's rainy season. Architectural drawings and ethnographic research were superposed to entomological data to detect critical interactions between uses of the space and settlement conditions potentially affecting malaria vector abundance and distribution. A total of 34 anopheline mosquitoes comprising three species (Anopheles gambiae s.l, An. pharoensis and An. coustani complex) were collected during the three months of mosquito collection. Anopheles gambiae s.l, the principal malaria vector in Ethiopia, was the predominant species of all the anophelines collected. Distribution of mosquito breeding sites across scales (household, settlement, urban landscape) is explained by environmental conditions, socio-cultural practices involving modification of existing spaces, and systemic misfits between built environment and territory. Variations in mosquito abundance and distribution in this study were mainly related to standard building practices that ignore the original logics of the territory, deficiency of water and waste disposal management systems, and adaptations of the space to fit heterogeneous lifestyles of residents. Our results indicate that contextualizing malaria control strategies in relation to vector ecology, social dynamics determining specific uses of the space, as well as building and territorial conditions could strengthen current elimination efforts. Although individual housing remains a critical unit of research for vector control interventions, this study demonstrates the importance of studying housing settlements at communal level to capture systemic interactions impacting transmission at the household level and in outdoor areas.

Grants and funding

The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) through a pump-prime funding (Grant number: BOVA004) from the BOVA Network (Building Out Vector-borne diseases in sub-Saharan Africa). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.