Downregulation of angulin-1/LSR induces malignancy via upregulation of EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma A549 cells

Oncotarget. 2023 Mar 24:14:261-275. doi: 10.18632/oncotarget.27728.

Abstract

Abnormal expression of bicellular tight junction claudins, including claudin-2 are observed during carcinogenesis in human lung adenocarcinoma. However, little is known about the role of tricellular tight junction molecule angulin-1/lipolysis-stimulated lipoprotein receptor (LSR). In the lung adenocarcinoma tissues examined in the present study, expression of claudin-2 was higher than in normal lung tissues, while angulin-1/LSR was poorly or faintly expressed. We investigated how loss of angulin-1/LSR affects the malignancy of lung adenocarcinoma cell line A549 and normal human lung epithelial (HLE) cells. The EGF receptor tyrosine kinase inhibitor AG1478 prevented the increase of claudin-2 expression induced by EGF in A549 cells. Knockdown of LSR induced expression of claudin-2 at the protein and mRNA levels and AG1478 prevented the upregulation of claudin-2 in A549 cells. Knockdown of LSR induced cell proliferation, cell migration and cell metabolism in A549 cells. Knockdown of claudin-2 inhibited the cell proliferation but did not affect the cell migration or cell metabolism of A549 cells. The TGF-β type I receptor inhibitor EW-7197 prevented the decrease of LSR and claudin-2 induced by TGF-β1 in A549 cells and 2D culture of normal HLE cells. EW-7197 prevented the increase of cell migration and cell metabolism induced by TGF-β1 in A549 cells. EW-7197 prevented the increase of epithelial permeability of FITC-4kD dextran induced by TGF-β1 in 2.5D culture of normal HLE cells. In conclusion, downregulation of angulin-1/LSR induces malignancy via EGF-dependent claudin-2 and TGF-β-dependent cell metabolism in human lung adenocarcinoma.

Keywords: angulin-1/LSR; cell metabolism; claudin-2; lung adenocarcinoma; malignancy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Adenocarcinoma of Lung* / genetics
  • Adenocarcinoma of Lung* / metabolism
  • Claudin-2 / metabolism
  • Down-Regulation
  • Epidermal Growth Factor / metabolism
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Tight Junctions / metabolism
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta1 / metabolism
  • Up-Regulation

Substances

  • RTKI cpd
  • vactosertib
  • Epidermal Growth Factor
  • Claudin-2
  • Transforming Growth Factor beta1
  • Transforming Growth Factor beta