Synthesis and Evaluation of MGB Polyamide-Oligonucleotide Conjugates as Gene Expression Control Compounds

J Nucleic Acids. 2023 Mar 14:2023:2447998. doi: 10.1155/2023/2447998. eCollection 2023.

Abstract

MGB polyamide-oligonucleotide conjugates ON 1-4 with linked MGB polyamides at the 2-exocyclic amino group of a guanine base using aminoalkyl linkers were synthesized and evaluated in terms of binding affinity for complementary DNA containing the MGB polyamide binding sequence using T m and CD analyses. The MGB polyamides comprised pyrrole polyamides (Py4- and Py3-), which possess binding affinity for A-T base pairs, and imidazole (Im3-) and pyrrole-γ-imidazole (Py3-γ-Im3-) polyamide hairpin motifs, which possess binding affinity for C-G base pairs. It was found that the stability of modified dsDNA was greatly influenced by the linker length. Py4- and Py3-oligonucleotide conjugates (ON 1 (n = 4) and ON 2 (n = 4)) containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA. Although Im3-oligonucleotide conjugate ON 3 (n = 4) containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA, stabilization of dsDNA by the imidazole amide moiety of ON 3 (n = 4) was lower compared with the pyrrole amide moiety of ON 2 (n = 4). The Py3-γ-Im3-oligonucleotide conjugate ON 4 (n = 2), which possesses binding affinity for C-G base pairs via a pyrrole/imidazole combination and contains a 2-aminoethyl linker, showed high binding ability for complementary DNA. Furthermore, the DNA sequence recognition of MGB polyamide-oligonucleotide conjugates was investigated using single-base mismatch DNAs, which possess a mismatch base in the MGB polyamide binding sequence. The Py3-γ-Im3-oligonucleotide conjugate ON 4 (n = 2) showed high sequence recognition ability for complementary DNA.