Introgression and targeting of the Pl37 and Pl38 genes for downy mildew resistance from wild Helianthus annuus and H. praecox into cultivated sunflower (Helianthus annuus L.)

Theor Appl Genet. 2023 Mar 23;136(4):82. doi: 10.1007/s00122-023-04316-y.

Abstract

Two new downy mildew resistance genes, Pl37 and Pl38, were introgressed from wild sunflower species into cultivated sunflower and mapped to sunflower chromosomes 4 and 2, respectively Downy mildew (DM), caused by the oomycete pathogen Plasmopara halstedii (Farl.) Berl. & de Toni, is known as the most prevalent disease occurring in global sunflower production areas, especially in North America and Europe. In this study, we report the introgression and molecular mapping of two new DM resistance genes from wild sunflower species, Helianthus annuus and H. praecox, into cultivated sunflower. Two mapping populations were developed from the crosses of HA 89/H. annuus PI 435417 (Pop1) and CMS HA 89/H. praecox PRA-417 (Pop2). The phenotypic evaluation of DM resistance/susceptibility was conducted in the BC1F2-derived BC1F3 populations using P. halstedii race 734. The BC1F2 segregating Pop1 was genotyped using an Optimal GBS AgriSeq™ Panel consisting of 768 mapped SNP markers, while the BC1F2 segregating Pop2 was genotyped using a genotyping-by-sequencing approach. Linkage analysis and subsequent saturation mapping placed the DM resistance gene, designated Pl37, derived from H. annuus PI 435417 in a 1.6 cM genetic interval on sunflower chromosome 4. Pl37 co-segregated with SNP markers SPB0003 and C4_5738736. Similarly, linkage analysis and subsequent saturation mapping placed the DM resistance gene, designated Pl38, derived from H. praecox PRA-417 in a 0.8 cM genetic interval on sunflower chromosome 2. Pl38 co-segregated with seven SNP markers. Multi-pathotype tests revealed that lines with Pl37 or Pl38 are immune to the most prevalent and virulent P. halstedii races tested. Two germplasm lines, HA-DM15 with Pl37 and HA-DM16 with Pl38, were developed for use in sunflower DM-resistance breeding.

MeSH terms

  • Chromosome Mapping
  • Helianthus* / genetics
  • Oomycetes*
  • Peronospora*
  • Plant Breeding
  • Plant Diseases / genetics
  • Polymorphism, Single Nucleotide