Identification of a suppressor for the wheat stripe rust resistance gene Yr81 in Chinese wheat landrace Dahongpao

Theor Appl Genet. 2023 Mar 23;136(4):67. doi: 10.1007/s00122-023-04347-5.

Abstract

Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.

MeSH terms

  • Australia
  • Basidiomycota*
  • Chromosome Mapping
  • Disease Resistance / genetics
  • Humans
  • Plant Breeding
  • Plant Diseases / genetics
  • Triticum* / genetics