Near-Sensor Reservoir Computing for Gait Recognition via a Multi-Gate Electrolyte-Gated Transistor

Adv Sci (Weinh). 2023 May;10(15):e2300471. doi: 10.1002/advs.202300471. Epub 2023 Mar 22.

Abstract

The recent emergence of various smart wearable electronics has furnished the rapid development of human-computer interaction, medical health monitoring technologies, etc. Unfortunately, processing redundant motion and physiological data acquired by multiple wearable sensors using conventional off-site digital computers typically result in serious latency and energy consumption problems. In this work, a multi-gate electrolyte-gated transistor (EGT)-based reservoir device for efficient multi-channel near-sensor computing is reported. The EGT, exhibiting rich short-term dynamics under voltage modulation, can implement nonlinear parallel integration of the time-series signals thus extracting the temporal features such as the synchronization state and collective frequency in the inputs. The flexible EGT integrated with pressure sensors can perform on-site gait information analysis, enabling the identification of motion behaviors and Parkinson's disease. This near-sensor reservoir computing system offers a new route for rapid analysis of the motion and physiological signals with significantly improved efficiency and will lead to robust smart flexible wearable electronics.

Keywords: gait recognition; multi-gate electrolyte-gated transistor; near-sensor computing; reservoir computing; smart wearable electronics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrolytes
  • Electronics
  • Gait
  • Gait Analysis
  • Humans
  • Wearable Electronic Devices*

Substances

  • Electrolytes