Focal Application of Neurotrophic Factors Augments Outcomes of Nerve-Muscle-Endplate Grafting Technique for Limb Muscle Reinnervation

J Reconstr Microsurg. 2023 Nov;39(9):695-704. doi: 10.1055/s-0043-1764487. Epub 2023 Mar 22.

Abstract

Background: We have developed a novel muscle reinnervation technique called "nerve-muscle-endplate grafting (NMEG) in the native motor zone (NMZ)." This study aimed to augment the outcomes of the NMEG-NMZ (NN) by focal application of exogenous neurotrophic factors (ENFs) for limb reinnervation.

Methods: Adult rats were used to conduct NN plus ENF (NN/ENF) and autologous nerve grafting (ANG, technique control). The nerve innervating the left tibialis anterior (TA) muscle was resected and the denervated TA was immediately treated with NN/ENF or ANG. For NN procedure, an NMEG pedicle was taken from the lateral gastrocnemius muscle and transferred to the NMZ of the denervated TA. For ANG, the nerve gap was bridged with sural nerve. Three months after treatment, the extent of functional and neuromuscular recovery was assessed by measuring static toe spread, maximal muscle force, wet muscle weight, regenerated axons, and innervated motor endplates (MEPs).

Results: NN/ENF resulted in 90% muscle force recovery of the treated TA, which is far superior to ANG (46%) and NN alone (79%) as reported elsewhere. Toe spread recovered up to 89 and 49% of the control for the NN/ENF and ANG groups, respectively. The average wet muscle weight was 87 and 52% of the control for muscles treated with NN/ENF and ANG, respectively. The mean number of the regenerated axons was 88% of the control for the muscles treated with NN/ENF, which was significantly larger than that for the ANG-repaired muscles (39%). The average percentage of the innervated MEPs in the NN/ENF-treated TA (89%) was higher compared with that in the ANG-repaired TA (48%).

Conclusion: ENF enhances nerve regeneration and MEP reinnervation that further augment outcomes of NN. The NN technique could be an alternative option to treat denervated or paralyzed limb muscles caused by traumatic nerve injuries or lesions.

MeSH terms

  • Animals
  • Motor Endplate / pathology
  • Muscle Denervation / methods
  • Muscle, Skeletal / innervation
  • Nerve Growth Factors*
  • Nerve Regeneration / physiology
  • Neurosurgical Procedures* / methods
  • Rats

Substances

  • Nerve Growth Factors