A Unified Training Process for Fake News Detection Based on Finetuned Bidirectional Encoder Representation from Transformers Model

Big Data. 2023 Mar 22. doi: 10.1089/big.2022.0050. Online ahead of print.

Abstract

An efficient fake news detector becomes essential as the accessibility of social media platforms increases rapidly. Previous studies mainly focused on designing the models solely based on individual data sets and might suffer from degradable performance. Therefore, developing a robust model for a combined data set with diverse knowledge becomes crucial. However, designing the model with a combined data set requires extensive training time and sequential workload to obtain optimal performance without having some prior knowledge about the model's parameters. The presented study here will help solve these issues by introducing the unified training strategy to have a base structure for the classifier and all hyperparameters from individual models using a pretrained transformer model. The performance of the proposed model is noted using three publicly available data sets, namely ISOT and others from the Kaggle website. The results indicate that the proposed unified training strategy surpassed the existing models such as Random Forests, convolutional neural networks, and long short-term memory, with 97% accuracy and achieved the F1 score of 0.97. Furthermore, there was a significant reduction in training time by almost 1.5 to 1.8 × by removing words lower than three letters from the input samples. We also did extensive performance analysis by varying the number of encoder blocks to build compact models and trained on the combined data set. We justify that reducing encoder blocks resulted in lower performance from the obtained results.

Keywords: BERT; fake news; finetuning; hyperparameters; pretrained model.